## Sample Problem — Calculating Acceleration

A runner racing in a 100 m dash accelerates from rest to a speed of 9.0 m/s in 4.5 s. What was his average acceleration during this time interval?

## **What to Think About**

- 1. Determine the correct formula.
- 2. Solve for acceleration. Note that runner's average acceleration was 2.0 m/s/s, which is usually written  $2.0 \, \text{m/s}^2$

## How to Do It

$$a = \frac{\Delta v}{\Delta t} = \frac{v_f - v_o}{t_f - t_o}$$

$$= \frac{9.0 \text{ m/s} - 0 \text{ m/s}}{4.5 \text{ s} - 0 \text{ s}}$$

$$a = 2.0 \text{ m/s}^2$$

The runner's average acceleration was 2.0 m/s2.

## **Practice Problems — Calculating Acceleration**

- 1. What is the average acceleration for the following?
  - (a) A car speeds up from 0 km/h to 60.0 km/h in 3.00 s.

$$V_i = 0 \text{ m/s}$$

$$V_f = 60.0 \text{ km/h} \div 3.6 = 16.67 \text{ m/s}$$

$$t = 3.00 \text{ s}$$

(b) A runner accelerates from rest to 9.00 m/s in 3.00 s.

$$V_{i} = 0 \text{ m/s}$$
 $V_{i} = 0 \text{ m/s}$ 
 $V_{i} = 9.00 \text{ m/s}$ 
 $V_{i} = 0 \text{ m/s$ 

2. What is the average acceleration of a truck that accelerates from 45.0 km/h to 60.0 km/h in 7.50 s?

$$V_i = 45.0 \text{ km/h} \div 36 = 12.5 \text{ m/s}$$
  
 $V_f = 60.0 \text{ km/h} \div 3.6 = 16.67 \text{ m/s}$   
 $t = 7.50 \text{ s}$ 

$$a = \frac{\sqrt{f - V_1}}{t} = \frac{16.67 \text{m/s} - 12.50 \text{m/s}}{7.50 \text{s}}$$
$$= 0.5556 \text{m/s}^2 = 0.556 \text{m/s}^2$$

 $a = \sqrt{f - Vi} = \frac{16.67 \text{m/s} - 0 \text{m/s}}{3.00 \text{s}}$ 

 $= 5.5 \, \text{m/s}^2$  $= (5.56 \, \text{m/s}^2)$ 

3. A car travelling 120 km/h brakes hard to avoid hitting a deer on the road, slowing to 60 km/h in 4.0 s. What is its acceleration? Why is it negative?

$$V_i = 120 \text{ km/h} \div 3.6 = 33.33 \text{ m/s}$$
  
 $V_f = 60 \text{ km/h} \div 3.6 = 16.67 \text{ m/s}$   
 $t = 4.05$ 

$$\frac{4 \cdot \sqrt{5}}{4}$$
=  $\frac{16.67 \text{ m/s} - 33.33 \text{ m/s}}{4.0 \text{ s}}$ 
=  $-4.165 \text{ m/s}^2 = -4.2 \text{ m/s}^2$