PHYSICS 11 Introductory Notes

Ms. Johnston
Room 106N 2016/17

Name:
Block:

Course Outline: Physics 11

Ms. Johnston (Rm. 106N)

Students will demonstrate an understanding and appreciation of the role of physics in society and develop knowledge, skills and methods employed by physicists. Emphasis will be placed on the applications of physics to everyday living and the skills needed in the workplace. Students will be engaged in the investigation of scientific questions and the development of plausible solutions.

Course Content

Section 1 - Introduction to Physics

Measurements of Science
Degree of Uncertainty
Displaying Data
Manipulating Equations

Section 2 - Kinematics and Dynamics

Describing Motion: Velocity
Acceleration
Forces
Vectors
Motion in Two Directions
Universal Gravitation
Momentum and Its Conservation

Section 3 - Mechanical and Heat Energy

Work, Energy and Power
Energy
Thermal Energy

Section 4 - Wave Motion and Geometric Optics

Waves and Energy Transfer
Light
Reflection and Refraction
Mirrors and Lenses
Diffraction and Interference of Light
Section 5/6 - Nuclear Physics/Special Relativity

Supplies

3 ring binder	pencil and pen
graph paper $(4 \mathrm{~mm})$	calculator
ruler	protractor

Grading and Evaluation

A	$86-100$	C	$60-66$
B	$73-85$	C-	$50-59$ (Pass)
C+	$67-72$	F	$40-49$ (Fail)

First Term Mark

a) Tests (70\%)

Includes quizzes and chapter/section exams. Students are responsible for completing exams missed. Expect to write exams after school or at lunch upon the day of your return.

b) Labs and Assignments (30\%)

Formal labs and informal labs will be collected and graded. Homework assignments will also be collected occasionally. Any labs or assignments missed due to legitimate absences are the responsibility of the student and should be completed and handed in upon your return. Assignments or labs not handed in will result in zero.

Final Grade

a) Final Exam (20\% of the final grade)

All students are required to write the final exam in Physics. The final will be comprehensive and worth 25% of the final grade.

b) End of term mark (80\%)

The end of term mark of tests and labs will consist of 75% of the final grade.
Tests (56\% of the overall marks)
Labs and Assignments (24% of the overall marks)

Office Hours

Students requesting additional assistance or time to make up labs or tests may see me at lunch of after school, by appointment.

Website Information

Ms. Johnston maintains a website containing course outlines, assigned homework, notes, and links to other useful websites. If you are absent from school or unsure of the required work for the next day, please visit the website so that you can start catching up. The website address is: http://johnstonsd36.weebly.com.

Chapter 1: Introduction to Physics

What is Physics?

- Branch of science that studies the \qquad world (from \qquad to the
\qquad
- Study of the nature of \qquad and \qquad and how they are related;
- Ability to understand or predict the \qquad of activities occurring around you;
- \qquad is the "language" of physics.

How do physicists study problems?

- Ask \qquad , \qquad , \qquad ;
- Use mathematics to develop \qquad to explain experimental data;
- Apply the \qquad - all scientists study problems in an organized manner, using many techniques (Galileo Galilei).

Why learn Physics?

- \qquad preparation:
- Improve \qquad skills;
- Better able to make informed \qquad about questions related to science and technology.

Accuracy and Precision

\qquad numbers arise from counting.
\qquad quantities are approximate.

- \qquad of measurements depends on:
a) \qquad of the measurer:
b) size of the \qquad on the measuring device;
c) \qquad .
- \qquad refers to the degree of \qquad of a measurement.
- \qquad is an indication of how close a \qquad value comes to the \qquad value.

High Accuracy High Precision

Low Accuracy High Precision

High Accuracy Low Precision

Low Accuracy Low Precision

Because the precision of all measuring devices is limited, the number of digits that are valid for any measurement is also limited. Valid digits are called
\qquad .

Significant Figures

- Digits that are \qquad plus a digit that estimates the \qquad of the smallest unit of the measuring scale.
- Written measured quantities express:
a) \qquad
b) Degree of \qquad .

Rules for Significant Figures:

1) \qquad digits are \qquad significant.
e.g., 26.837 m (5 sig. Figs.)
2) All \qquad zeros \qquad the decimal are significant.
e.g., 56.00 mm (4 sig. figs.)
3) Zeros \qquad other significant digits are always significant.

$$
\begin{aligned}
\text { e.g., } 1000001 \mathrm{~m} & (7 \text { sig. figs. }) \\
107.00 \mathrm{~s} & (5 \text { sig. figs. })
\end{aligned}
$$

4) Zeros used solely for \qquad the \qquad are not significant.

$$
\begin{aligned}
\text { e.g., } 186000 \mathrm{~m} & \text { (3 sig. figs.) } \\
0.0030 \mathrm{~m} & \text { (2 sig. figs.) }
\end{aligned}
$$

To avoid confusion, express in \qquad :

$$
\begin{array}{ll}
1.86 \times 10^{5} \mathrm{~m} & (3 \text { sig. figs. }) \\
1.860 \times 10^{5} \mathrm{~m} & (4 \text { sig. figs. }) \\
3.0 \times 10^{-3} \mathrm{~m} & (2 \text { sig. figs. })
\end{array}
$$

Practice:

1) 2804 m
2) 284 m
3) 0.0029 m
4) 0.003068 m
5) $4.60 \times 10^{5} \mathrm{~m}$
6) 783100 kg

Accuracy and Precision

Accuracy is an indication of how close a measured value comes to the true value. Precision refers to the amount of uncertainty in the measurement. A mass reading such as 3.52 g , that has three significant digits, for example; is more precise than a reading such as 3.5 g , that has only two significant digits.
Two identical nails are placed alongside the scale of two different centimeter rulers, as illustrated below.

1. Complete the following chart.

Smallest division of ruler
Length of nail as measurable on ruler
Number of significant digits
Uncertainty ($\pm \mathrm{cm}$)

2. Which ruler allows for the more precise measurement? Why?
3. A micrometer determines that the actual length of the nail is 3.8001 cm . Which of the above measurements is more accurate? Why?
4. Read the mass shown on the balance diagram below. Record to the nearest 0.01 g . \qquad A. Read the mass shown the baiance diagramber

S. Read the temperature shown on the diagram of a metric thermometer. Record to the nearest $0.5^{\circ} \mathrm{C}$.
\qquad

For the instruments shown below, record the correct reading. 1.

Metric Ruler

a. \qquad
b. \qquad c. \qquad d. \qquad
e. \qquad
2.

Balance

a. \qquad

3.

a. \qquad b. \qquad c. \qquad d. \qquad e. \qquad

Operations with Significant Figures

The result of any mathematical operation with measurements can never be more \qquad than the \qquad precise measurement.

Addition and Subtraction

- Round off the calculation to correspond with the \qquad precise measurement.
- Significant figures after the decimal point should \qquad be more than the least precise measurement.

```
i.e.,
    \(24.686 \mathrm{~m} \quad\) i.e., \(\quad 5.65 \times 10^{2} \mathrm{~m}-1.56 \mathrm{~m}\)
    \(2.343 \mathrm{~m} \quad=565 \mathrm{~m}-1.56 \mathrm{~m}\)
        \(+3.21 \mathrm{~m}\)
            m
                        \(=m\)
        \(=\quad m\)
```


Multiplication and Division

- Round off calculation to have the \qquad number of significant figures as the factor with the ___ significant figures.
i.e.,

3.22 cm
$\times \quad 2.1 \mathrm{~cm}$
$\mathrm{~cm}^{2}$

i.e., $\quad 36.5 \mathrm{~m}$ 3.414 s
$=\mathrm{m} / \mathrm{s}$
$=\mathrm{m} / \mathrm{s}$

Practice:

1. Add
(a) $6.201 \mathrm{~cm}, 7.4 \mathrm{~cm}$,
(b) $12.6 \mathrm{~m}, 1.7 \times 10^{2} \mathrm{~m}$ 0.68 cm , and 12.0 cm
2. Subtract
(a) 8.264 g from 10.8 g
(b) 0.4168 m from 475 m
3. Multiply
(a) $131 \mathrm{~cm} \times 2.3 \mathrm{~cm}$
(b) $3.2145 \mathrm{~km} \times 4.23 \mathrm{~km}$
4. Divide
(a) 20.2 cm by 7.41 s
(b) 3.1416 cm by 12.4 s

Additional Practice

1. Add or Subtract:
a) $94.2953+53.641+89.8=$
b) $4.37+12.8=$
c) $6.18+54.762=$
d) $28.3-4.3=$
e) $65.5-41.641=$
f) $7.92+3.465+25.22=$
g) $58.831-6.6467=$
h) $3.4+5.49+63.293=$
i) $7.283+35.328+21.57=$
ј) $96.83-78.1=$
k) $5.8+14.978=$
I) $7.3413-2.341=$
2. Multiply or Divide:
a) $4 \times 752=$
b) $0.032 \times 14.90=$
c) $48.74 \times 0.0090 \times 3100=$
d) $0.62 \times 8.3=$
e) $0.0036 \times 917=$
f) $0.05 \times 53.6 \times 3000=$
g) $107 \div 96.66=$
h) $68.6 \times 0.34=$
i) $9090 \div 66.88=$
j) $50 \div 8.697=$
k) $5800 \div 21.6=$
I) $14 \times 0.004=$

Scientific Notation

- Used for very \qquad or very \qquad quantities
- The numerical part of a measurement is expressed as a number between 1 and 10 and multiplied by a whole number power of 10 .

$$
M \times 10^{n} \quad \text { Where: } \quad \begin{array}{ll}
1<M<10 \\
n=\text { integer }
\end{array}
$$

- Move decimal until 1 non-zero number remains on the left.

Examples: | 5800 m | $=$ |
| :--- | :--- |
| 0.000508 m | $=\square \mathrm{m}$ |
| | m |

Operations in Scientific Notation

Addition/Subtraction with Like Exponents
a) $4 \times 10^{8} \mathrm{~m}+3 \times 10^{8} \mathrm{~m}=7 \times 10^{8} \mathrm{~m}$
b)

$$
\begin{aligned}
& 6.2 \times 10^{-3} \mathrm{~m} \\
&--\quad 2.8 \times 10^{-3} \mathrm{~m} \\
& \hline
\end{aligned}
$$

Addition/Subtraction with Unlike Exponents

- convert measurements to a common exponent, then add or subtract.
a) $4.0 \times 10^{6} \mathrm{~m}+3.0 \times 10^{5} \mathrm{~m}$
$=4.0 \times 10^{6} \mathrm{~m}+0.3 \times 10^{6} \mathrm{~m}$
$=$ \qquad
b) $4.0 \times 10^{-6} \mathrm{~kg}-3.0 \times 10^{-7} \mathrm{~kg}$

$$
=4.0 \times 10^{-6} \mathrm{~kg}-0.3 \times 10^{-6} \mathrm{~kg}
$$

$=$ \qquad

- all measurements need to be in the same units.

Multiplication Using Scientific Notation

\qquad the values and \qquad the exponents;

- units are \qquad .

Example:
$\left(3 \times 10^{6} \mathrm{~m}\right)\left(2 \times 10^{3} \mathrm{~m}\right)$
$=6 \times 10^{((6+3)} \mathrm{m}^{2}$
$=$ \qquad

Division using Scientific Notation

- ___ the values and ___ the exponent of the divisor from the exponent of the dividend.
- Units are \qquad .

Example:
$8 \times 10^{6} \mathrm{~m}$
$=$
$2 \times 10^{3} s$
$8 \times 10^{6} \mathrm{~kg}$
$=$
$2 \times 10^{-2} \mathrm{~m}^{3}$

Practice:

1. a) $2.0 \times 10^{-6} \mathrm{~m}+3.0 \times 10^{-7} \mathrm{~m}$
b) $2.0 \times 10^{6} \mathrm{~m}+3.0 \times 10^{7}$
2. a) $3.04 \times 10^{2} g-4 \times 10^{0} g$
b) $3 \times 10^{-2} g-2 \times 10^{-3} g$
3. a) $\left(2 \times 10^{4} \mathrm{~m}\right)\left(4 \times 10^{8} \mathrm{~m}\right)$
b) $\left(6 \times 10^{-4} \mathrm{~m}\right)\left(2 \times 10^{-8} \mathrm{~m}\right)$
4. a) $\frac{6 \times 10^{8} \mathrm{~kg}}{2 \times 10^{4} \mathrm{~m}^{3}}$
b) $\frac{6 \times 10^{-5} \mathrm{~m}}{3 \times 10^{3} \mathrm{~s}}$
5. a) $\frac{\left(3 \times 10^{4} \mathrm{~kg}\right)\left(4 \times 10^{4} \mathrm{~m}\right)}{6 \times 10^{4}}$
b) $\frac{\left(2.5 \times 10^{6} \mathrm{~kg}\right)\left(6 \times 10^{4} \mathrm{~m}\right)}{5 \times 10^{-2} \mathrm{~s}^{2}}$

Metric System
-

- Developed in

- Convenient, based on powers of \qquad
- Fundamental/base units used worldwide:

Prefixes

- Used to change SI unites by powers of ten.

Prefix	Symbol	Fractions
pico	p	10^{-12} or $1 / 1000000000000$
nano	n	10^{-9} or $1 / 1000000000$
micro	μ	10^{-6} or $1 / 1000000$
milli	m	10^{-3} or $1 / 1000$
centi	c	10^{-2} or $1 / 100$
deci	d	10^{-1} or $1 / 10$
		Multiples
decka	da	10^{1} or 10
hector	h	10^{2} or 100
kilo	k	10^{3} or 1000
mega	M	10^{6} or 1000000
giga	G	10^{9} or 1000000000
tera	T	10^{12} or 1000000000000

Multiples Units

- Larger than the base unit (i.e., km, Mg)

How do we convert 452 g to kg ?

How do we convert 5.3 kg into g ?

Fractional Units

- Smaller than the base unit (i.e., cm, mL)

How do we convert 500 nm to m ?

How do we convert 0.005 m into nm ?

Practice:

Convert each of the following length measurements to its equivalent in meters.

1. 3.0 cm
2. 83.2 pm
3. 5.2 km
4. 0.426 Mm
5. 24.3 mm
6. 5000 nm

Convert each of the following mass measurements to its equivalent in kilograms.

1. 293 g
2. $207 \mu \mathrm{~g}$
3. 82.3 Mg
4. 426 mg
5. 2.4 ng
6. 54.4 dg

Derived Units

- A derived unit is composed of more than one unit or units with exponents.
- Conversions require cancellations in two directions Convert 90 km/h into m/s:

Convert $0.25 \mathrm{~m}^{3}$ to cm^{3} :

Practice:

1. Convert $25 \mathrm{~m} / \mathrm{s}$ to km / h :
2. Convert $15000 \mathrm{~mm}^{2}$ to m^{2}.
3. Convert $5.0 \mathrm{~m}^{3}$ into cm^{3}.
4. Convert $25 \mathrm{~km} / \mathrm{min}$ to m / s
5. Convert $1.352 \mathrm{~km} / \mathrm{h}$ to mm / s

CHALLENGE: (note: 1 mile $=1.6 \mathrm{~km}$ and $1 \mathrm{in}=2.5 \mathrm{~cm}$)
7. Convert 22 miles to km
8. Convert 2 ft 9 in to cm

Graphing

Independent variable

- The one whose values the experimenter \qquad and \qquad (__ variable);
- Plotted on the \qquad axis.
i.e., the experimenter chooses the time at which to record the distance a toy car has travelled.

Dependent variable

- \qquad variable;
- Changes as a result of a \qquad in the other variable;
- Plotted on the \qquad axis. i.e., The distance a toy car travels \qquad as time increases.

Plotting Graphs

1. \qquad variable is placed on the horizontal axis and the \qquad variable is placed on the vertical axis.
2. Determine the \qquad of data and spread the \qquad as widely as possible.
Number and label each \qquad and put a \qquad on top of the page (dependent-independent).
3. Plot each data point and \qquad in pencil. Draw a small \qquad around each dot, and then draw the best \qquad line or \qquad line that passes as many \qquad as possible.

Example: The distance a car travels over time is recorded in the table below. Plot the data on the graph.

Time (h)	Distance (km)
0	20
1	40
2	60
3	80
4	100
5	120

Linear, Quadratic, and Inverse Relationships

Direct (Linear)

$$
\begin{aligned}
y=m x & +b \\
b & =y \text { intercept } \\
m & =\text { constant }(\\
y & = \\
x & =
\end{aligned}
$$

Exponential (parabolic)

$$
\begin{aligned}
& y=k x^{z} \\
& \quad k=\text { constant } \\
& \quad y \text { varies directly with the } \\
& \quad \text { of } z \\
& \quad \text { (as } x \text { increases, } y \\
& \text { more quickly) }
\end{aligned}
$$

Inverse (hyperbolic)

$$
x y=k \text { or } y=\underline{k}
$$

As x increases, y decreases

- finding values between measured points.
- finding points beyond measured points.
- if graph is extended beyond plotted points, use a dotted line.

Manipulating Equations

$$
R=\frac{V}{I}
$$

Therefore, $\quad I=$

$$
V=
$$

Solve for X :

$$
\frac{A y}{x}=\frac{c b}{s}
$$

$$
A y=\frac{c b X}{S} \quad \text { 1) Multiply both sides by } X \text {. }
$$

$$
\underline{X c b}=A y
$$

2) Rearrange X on left side S
$\frac{X}{S}=\frac{A y}{c b} \quad$ 3) Divide both sides by $c b$.
$X=$ AyS $\quad 4)$ Multiply by S. cb

Practice:

1. $y=m x+b$
a) Solve for x.
b) Solve for b.
2. Solve for v .
a) $d=v t$
b) $\underset{v}{t}=\underline{d}$
c) $a=\frac{v^{2}}{2 d}$
d) $\frac{v}{a}=\frac{b}{c}$
3. Solve for E .
a) $f=E$
b) $m=\frac{2 E}{v^{2}}$
c) $\frac{E}{c^{2}}=m$
4. Solve for a.
a) $v=v_{0}+a t$
b) $v^{2}=v_{0}^{2}+a y$
c) $v=\sqrt{2 a}$
